Iterative methods for ill-posed problems and semiconvergent sequences
نویسندگان
چکیده
منابع مشابه
Iterative Solution Methods for Large Linear Discrete Ill-posed Problems
This paper discusses iterative methods for the solution of very large severely ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The right-hand side vector represents the given data and is assumed to be contaminated by errors. Solution methods proposed in the literature employ some form of ltering to reduce the in uence of the error in ...
متن کاملChoosing Regularization Parameters in Iterative Methods for Ill-Posed Problems
Numerical solution of ill-posed problems is often accomplished by discretization (projection onto a finite dimensional subspace) followed by regularization. If the discrete problem has high dimension, though, typically we compute an approximate solution by projecting the discrete problem onto an even smaller dimensional space, via iterative methods based on Krylov subspaces. In this work we pre...
متن کاملIterative methods for nonlinear ill-posed problems in Banach spaces
In this paper, we study convergence of two different iterative regularization methods for nonlinear ill-posed problems in Banach spaces. One of them is a Landweber type iteration, the other one the iteratively regularized Gauss– Newton method with an a posteriori chosen regularization parameter in each step. We show that a discrepancy principle as a stopping rule renders these iteration schemes...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملCascadic multilevel methods for ill-posed problems
Multilevel methods are popular for the solution of well-posed problems, such as certain boundary value problems for partial differential equations and Fredholm integral equations of the second kind. However, little is known about the behavior of multilevel methods when applied to the solution of linear ill-posed problems, such as Fredholm integral equations of the first kind, with a right-hand ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2006
ISSN: 0377-0427
DOI: 10.1016/j.cam.2005.05.028